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Abstract

The nonparametric test for change-point detection proposed by Gombay and
Horvéth is revisited and extended in the broader setting of empirical process theory.
The resulting testing procedure for potentially multivariate observations is based on
a sequential generalization of the functional multiplier central limit theorem and on
modifications of Gombay and Horvath’s seminal approach that appears to improve
the finite-sample behavior of the tests. A large number of candidate test statistics
based on processes indexed by lower-left orthants and half-spaces are considered and
their performance is studied through extensive Monte Carlo experiments involving
univariate, bivariate and trivariate data sets. Finally, practical recommendations
are provided and the tests are illustrated on trivariate hydrological data.

Keywords: half-spaces; lower-left orthants; multiplier central limit theorem; multi-
variate independent observations; partial-sum process.



1 Introduction

Let X4,...,X, be a sequence of independent d-dimensional random vectors for some
fixed integer d = 1. The aim of this work is to study, both theoretically and empirically,
nonparametric tests for the detection of a change-point in the sequence Xj, ..., X,,. The
corresponding null hypothesis is

Hy : 3 Py such that Xy,..., X, have law F,. (1)

As frequently done, the behavior of the derived tests will be investigated under the
alternative hypothesis of a single change-point:

H; :3 distinct P; and Py, and k* € {1,...,n — 1} such that
Xi,..., X have law P, and Xy q,..., X, have law P,. (2)

There exists an abundant literature on nonparametric tests for change-point detec-
tion. We shall not review here procedures designed for serially dependent observations.
The approaches proposed for sequences of independent observations differ, on one hand,
according to the test statistic, and on the other hand, according to the resampling tech-
nique used to compute an approximate p-value for the test statistic. In terms of the test
statistic, two frequently encountered classes of approaches are those based on U-statistics
(see e.g. Csorgd and Horvath, 1988; Ferger, 1994; Gombay and Horvath, 2002; Horvéth
and Huskova, 2005) and those based on empirical c.d.f.s (see e.g. Gombay and Horvath,
1999; Horvéath and Shao, 2007). As far as the resampling technique is concerned, one
finds approaches based on permutations of the original sequence (see e.g. Antoch and
Huskova, 2001; Horvath and Huskova, 2005; Horvath and Shao, 2007) and approaches
that use a weighted bootstrap based on multiplier central limit theorems (see e.g. Gom-
bay and Horvath, 1999, 2002). For a broader presentation of the field of change-point
analysis, we refer the reader to the monographs by Brodsky and Darkhovsky (1993) and
Csorgd and Horvéth (1997).

In this paper, we revisit and extend the approach proposed by Gombay and Horvath
(1999) based on the test statistic

M=) o [Fule) — B y(a)

va = 1<I£l<a;£1 n3/2 o RA n )
where
1 1 &
Fi(z) = kZ;l(Xzéx) and > e(z) = — Z 1(X; < x), r e RY,
1= i=k+1
are the empirical c.d.f.s computed from Xji,..., X} and Xy 1,...,X,, respectively (see

also Csorg6 and Horvath, 1997, Section 2.6). From a theoretical perspective, we work in
the framework of the theory of empirical processes as presented for instance in van der
Vaart and Wellner (2000) and Kosorok (2008). To obtain results that are valid for many
different classes of functions (in the sense of empirical process theory — see Section 2.1),
we first extend the multiplier central limit theorem (see e.g. Kosorok, 2008, Theorem

2



10.1 and Corollary 10.3) to the sequential setting. This allows us to obtain interesting
generalizations of Theorems 2.1, 2.2 and 2.3 of Gombay and Horvath (1999). In particular,
we propose a slightly different multiplier process that appears to lead to better behaved
tests in the case of moderate sample size. From a more practical perspective, we consider a
large number of candidate test statistics based on processes indexed by lower-left orthants
and by half-spaces, and we study the finite-sample performance of the corresponding tests
through extensive Monte Carlo experiments involving univariate, bivariate and trivariate
data sets. As we shall see, in the multivariate case, the tests based on processes indexed
by half-spaces appear to be substantially more powerful than more classical tests based
on multivariate empirical c.d.f.s (i.e., based on processes indexed by lower-left orthants).

The paper is organized as follows. In the second section, we state the theoretical
results at the root of the studied class of tests in the broad setting of empirical process
theory. The third section is devoted to an application of the theorems of Section 2 to the
derivation of nonparametric tests for change-point detection for two classes of functions
which are the collection of indicator functions of lower-left orthants and the collection
of indicator functions of half-spaces. The results of large-scale Monte-Carlo experiments
comparing the finite-sample behavior of the tests are partially reported in the fourth
section. The last section contains practical recommendations and presents an application
of the studied tests to trivariate hydrological data. All the proofs are relegated to the
appendices.

Note finally that the code of all the tests studied in this work will be documented and
released as an R package whose tentative name is npcp.

2 Theoretical results for change-point detection

2.1 Notation and setting

All the random variables used in this work are defined with respect to the underlying
probability space (€2, G, P) and the outer probability measure corresponding to P is de-
noted by P*.

Let Xi,...,X, be iid. d-dimensional random vectors with law P, and let F be
a class of measurable functions from R? to R. The empirical measure is defined to
be P, = n~! Z?:l dx,, where ¢, is the measure that assigns a mass of 1 at x and zero
elsewhere. For f € F, P, f denotes the expectation of f under P,,, and P f the expectation
under P, i.e.,

P, f = %Zf(Xi) and  Pf= ffdP.

The empirical process evaluated at f is then defined as G, f = /n(P,f — Pf).

Saying that F is P-Donsker means that the sequence of processes {G,f : f € F}
converges weakly to a P-Brownian bridge {Gpf : f € F} in the space (*(F) of bounded
functions from F to R equipped with the uniform metric in the sense of Definition 1.3.3
of van der Vaart and Wellner (2000). Following usual notational conventions, this weak
convergence will simply be denoted by G,, ~» Gp in ¢*(F). Furthermore, we say that
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F,:R% — R is an envelope for F if F, is measurable and |f(z)| < F.(x) for every f € F
and z € R%.

The advantage of working in this general framework is that the forthcoming results
remain valid for many P-Donsker classes F. By taking F to be the class of indicator
functions of lower-left orthants in RY, ie., F = {y — 1(y < z) : x € Ed} with R =
R U {—00, 00}, one recovers the setting studied in Csorgé and Horvath (1997, Section 2.6)
and based on empirical cumulative distribution functions (c.d.f.s). Although this is a
natural choice for F, many other choices might be of interest in practice such as the class
of indicator functions of closed balls, rectangles or half-spaces (see Romano, 1988, for a
related discussion regarding the choice of F).

2.2 A multiplier central limit theorem for the sequential empir-
ical process

The sequential empirical process is defined as

Ins]
Zo(s, f) viﬁ Y =PI = VAG)Gf.  sel01] fe F,

where A, (s) = |ns|/n and with the convention that Pyf = 0 for all f € F.

According to Theorem 2.12.1 of van der Vaart and Wellner (2000), F being P-Donsker
is equivalent to Z, ~» Zp in (*(|0,1] x F), where Zp is a tight centered mean-zero
Gaussian process with covariance function

cov{Zp(s, f),Zp(t,9)} = (s At)(Pfg— PfPyg)
known as a P-Kiefer-Miiller process.

Given i.i.d. random variables &1, . . ., &, with mean 0 and variance 1, satisfying SSO{P(|£1| >
7)}"2dr < oo, and independent of the random sample X1, ..., X,,, we define the following
multiplier version of Z,:

Ins|
Z(s, f) = %ﬁ Y &Uf(X)—Pfl,  selo1].feF

Notice that the empirical process Zn depends on the unknown map f — P [ and therefore
cannot be computed. With applications in mind, we define two versions of Z,, (depending
on how f — Pf is estimated) that can be fully computed. For any s € [0, 1], f € F, let

R Ins]

where &,,5] = |ns]™! leislj ¢ and & = 0 by convention, and let

|ns]

Ln(s, f Z GLF(X0) = Puf}.



The following result is then a partial extension of the multiplier central limit theorem
(see e.g. Kosorok, 2008, Theorem 10.1 and Corollary 10.3) to the sequential setting.

Theorem 1. Let F be a P-Donsker class with measurable envelope F, such that PF? <
©. Then, (Zp,Zlnp,Zn,Zy) ~ (Zp, L, 75, 7)) in {£*(|0,1] x F)}*, where Z' is an
independent copy of Zp.

Theorem 1 suggests the following interpretation: when n is large, Z., can be regarded
as “almost” an independent copy of Z,,, while Z,, and Z,, can be regarded as computable
copies of Z,,. As we shall see, this interpretation is at the root of the resampling technique
considered in Section 3.

Although each of in and Zn could be regarded as “almost” an independent copy
of Zy, their behavior for moderate n might differ quite substantially. In Section 4, we
empirically investigate which of Z, or Z, leads to tests for change-point detection with
the best finite-sample properties.

2.3 Application to change-point detection

Recall that the null and alternative hypotheses under consideration are given in (1)
and (2), respectively.

Let F be a class of measurable functions. In order to test the aforementioned hypothe-
ses, we extend the approach studied in detail by Csorgé and Horvéath (1997, Section 2.6)
and compare, for all k€ {1,...,n— 1},

k n
Pf= DX)  and Bif=— Y f(X),  feF
=1

i=k+1

| =

Analogous to Csorgé and Horvéth (1997, Section 2.6), we define the process

Dn(57 f) = \/ﬁ/\n(s) {1 - )\n(S)} (]P)[nsjf - ]P):L—[nsjf) ) s € [07 1]7 JEF,

where \,(s) = |ns|/n and with the convention that Pyf = 0 and P§f = 0 for all f € F.
Notice that, under the null hypothesis, for any s € [0,1] and f € F, we have

Dn(s, ) = {1 = Au(8)} Zn(5, f) = M(SHZn(1, f) = Zo(s, £)} = Zn(s, ) = Ma(8)Zn(1, f).
(3)
With resampling in mind, we define two multiplier versions of D,, based on the mul-

tiplier versions of Z,, defined in the previous subsection. For any s € [0,1] and f € F,
let

H\j)n(s, f={1- An(s)}zn(sa f) = An(S){Zn(L f) = Zn(sa Y= Zn(5> f) - )‘n(S)Zn(L f),
and, following Gombay and Horvéath (1999), let

Du(s, f) = {1 = M()}Zu(s, [) = M) Z3 (s, f), (4)



where

R 1 n - - 1 n
i=|ns|+1 i=|ns|+1

and & = 0 by convention. Notice that the process Z*L defined above is, up to a small

error term vanishing as n — oo, the version of the process (s, f) — Zn(l — s, f) computed
from the “reversed” sequence (&,, X,), (§n1, Xn_1),---, (&1, X1).

The following two results extend Theorems 2.1, 2.2 and 2.3 of Gombay and Horvath
(1999) and suggest, for large n and under the null hypothesis, to interpret each of D,, and

~

D,, as an “almost” independent copy of D,,.

Theorem 2. Assume that Hy holdsAanc\i/ that F is Py-Donsker with measurable envelope
F, such that PyF? < oo. Then, (D, Dy, D) ~> (Dp,, Dy, D, ) in {£*([0,1] x F)}?, where
Dp, (s, f) = Zpy(s, f) — sZp,(1, f), s € [0,1], f € F, and DYy, is an independent copy of
Dp

0

As we continue, for any J : F — R, sup . |.J f| will be denoted by |J| 7. Also, for any
sequence of maps Y7, Y5, ..., each from Q2 to R, we say that the sequence Y,, is bounded in
outer probability if, for any € > 0, there exists M > 0 such that sup,.y P* (|Y,,| > M) < ¢.

Theorem 3. Assume that Hy holds with k* = |nt| for some t € (0,1) and that F is P
and Py-Donsker with measurable envelope F, such that P1F62 < oo and PgFe2 < . Then,

(i) Doy [ Du (s, f) = Kols, L >0,
where Ki(s, f) = (Pif — Paf)(s A t){1 — (s v 1)},

(1) SUDsefo.1] ID,(s, f)| 5 is bounded in outer probability,
(iii) D, converges weakly in (*([0,1] x F).

The previous result will be used in the next section to show that various tests for
change-point detection based on ID,, will tend to reject Hy under H; as n increases.

3 Tests for change-point detection a la Gombay and
Horvath

The aim of this section is to use the results of the previous section to derive tests for
change-point detection in the spirit of those proposed by Gombay and Horvath (1999).
Among the many possible choices for F, we consider the following two:

(C1) the collection O of indicator functions of lower-left orthants in R¢, where

O={fly) =1y <z):2eRY



(C2) the collection H of indicator functions of half-spaces in R?, where
H={fur(y) =1(a"y <b):aeSybeR}

and Sy is the subset of R composed of vectors with Euclidean norm one.

It is well-known that lower-left orthants and half-spaces are Vapnik-Chervonenkis classes

of sets. Consequently, O and H are P-Donsker for any law P (see e.g. van der Vaart and
Wellner, 2000; Kosorok, 2008).

As we continue, in the case of choice (C1), for any s € [0, 1] and fx € O, D,(s, fz),
Dy (s, f.) and D, (s, f,) will simply be denoted by D, (s, z), Dy (s, ) and D, (s, z), respec-
tively. Similarly, in the case of choice (C2), for any s € [0,1] and fap € H, D n (S fan),
Do (s, fap) and D, (s, fa,) will be denoted by D, (s, a, b), Dy, (s, a, b) and D,, (s, a, b), respec-
tively.

In the framework under consideration, a change in the sequence Xy, ..., X,, can occur
at any point k € {1,...,n — 1}. A test for change-point detection could therefore be
obtained by first defining a test statistic for any possible change-point k € {1,...,n — 1},
and then by combining the resulting n — 1 statistics into a global statistic using some
function from ¢ : R*! — R.

In the case of choice (C1), two natural possibilities for the n—1 change-point statistics
are respectively

Sk = fRd {]Dn (Sx) }Qan(x) _ %Zn; {Dn (Sx) }2, kefl,....n—1},

where F,(z) = P, f., v € @d, is the empirical c.d.f. computed from Xi,..., X, and

D, <ﬁ,a¢)‘ = max |D, <E,XZ~)
n 1<i<n n

Two natural choices for the function ¢ are the maximum and the arithmetic mean which
leads to the following four global statistics:

T = sup , ke{l,...,n—1}.

zeR4

Spyv = max S,p= sup | {D,(s,z)}*dF,(z),

I<ksn—1 s€[0,1] JR

T, = max T,; = sup sup|D, ,
’ 1<k<n1 se[Ol]:peRd| (5 2)

Sp s — %ni Sk = f 1 J D, (5,2 A, (2)ds

== ZTnk —J sup |D,, (s, z)|ds.

0 zeRd

Note that T, , is the global statistic used in Gombay and Horvath (1999).
In the case of choice (C2), for any k € {1,...,n — 1}, we first define

o Lo (o i [ 15 o ()
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where S = {a € S; : a; > 0} and, for any a € S;, F,,, is the (univariate) empirical c.d.f.
computed from the projected sample a' X1, ...,a' X, and

k k
D, (—,a, b)‘ = sup max |D, (—,a,aTXi) ‘
n aES+ lsisn n

As in the case of choice (C1), this leads to four global statistics depending on whether the
change-point statistics are combined using the maximum or the arithmetic mean, i.e.,

Ve = sup sup
aeS; beR

Up,v = max U, = sup J J {D, (s,a b)} dF, n(b)da,
8+

Isksn—1 s€[0,1]

Voo = max V,p = sup supsup|D,(s,a,b),
I<k<n—1 se[0,1] qes+ bER

1 n—1 1
Un =~ Z Up i = f J . J (D, (s,a,b)}* dF,,(b)dads,

= — Z Vok = J sup sup |D, (s, a, b)|ds.

0 (IES+ beR

In our Monte Carlo experiments, the integral and the supremum over a € SJ in the
definitions of U, and V,,j, respectively, were approximated numerically based on a
uniform discretization of Sj into m points. The implementation of the tests based on U, j
and V), i, is discussed in more detail in Appendix B. Notice finally that the change-point
statistics S, x and U, (resp. T, and V,, ;) coincide when d = 1 since S = {1}.

Let us now explain how approximate p-values for these statistics can be computed
using the multiplier processes ]D and ]D For the sake of brevity, we present the approach
and state the key results only for S, , as the cases of the other seven global statistics are
similar.

Let N be a large integer and let fi(j), ie{l,...,n}, je{l,...,N}, be ii.d. random
variables with mean 0 and variance 1 satisfying {; (P(I€Y)| > 2)}Y2dz < oo, and indepen-
dent of X1,...,X,,. Also, for any j € {1,..., N}, let DY (resp. IB)%])) denote the version
of D, (resp. ]l\j)n) computed from éj), o ,fr(bj). Moreover, for any j € {1,..., N}, let

~

~ . 2 >, . ~ 2
SY) = sup f {]D)gf) (5,1:)} dF,(z) and SU) = sup f {]D)gf) (s,x)} dF,(z).
’ s€[0,1] JrRd ’ s€[0,1] JrRd

The following result is then essentially a corollary of Theorem 2.

Proposition 1. Under Hy,
(SnV,S(l) CIOVRC) sgNj) s (Sy, SO, 8 g g

n [0,00) N+ where
S, = sup | (D s.0) AR
se[0,1] Jrd
is the weak limit of S, ., Fy is the c.d.f. corresponding to F,, and S(V1>,...,S(VN)
independent copies of S, .

are



The previous proposition suggests interpreting the S(] ) (resp. the gq(f )V) under the null
hypothesis as N “almost” independent copies of \S,, , and thus computing an approximate
p-value for S, . as

N ~ 1 & -
Z (S(J’ n,v) or as N Z 1 ( ,(L])V > va) . (6)
i =1

Proposition 2. Assume that H; holds with k* = |nt]| for somet € (0,1). Then, S, ., =
+0o0 while, for any j€{1,..., N}, Sn ), and SY " are bounded in outer probability.

A consequence of the previous proposition is that, under Hy, the approximate p-values
for S, will tend to zero in outer probability. As mentioned earlier, results analogous to
Propositions 1 and 2 can be obtained for S, +, T}, v, Ty v, Unv, Up 4, Vv and V,, ..

4 Monte Carlo experiments

Large-scale Monte Carlo experiments were carried out in order to study the finite-sample
performance of the tests defined in the previous section. Let @, be one of S, , S, 4,
Ty, Tht, Uy, Uy, Vi, and V,, 1. In the rest of the paper, the test based on @,
will be referred to as the test based on @n (resp. én ) when its approximate p-value is
) ()

( )-

computed using the multiplier processes Dy’ (resp. Dy

To compare the power of the aforementioned tests, several univariate and multivariate
scenarios were considered and 1000 samples of size n were generated under each scenario
for n € {50,100,200}. Recall that the c.d.f. corresponding to Py in Hy defined in (1) is
denoted by Fp. Similarly, the distinct c.d.f.s corresponding to P; and P, in H; defined
in (2) will be denoted by F; and Fj, respectively, as we continue. In all scenarios, the
multipliers appearing in the ]IAJ)%] ) and IB)S ) were taken from the standard normal distri-
bution. All approximate p-values were computed from N = 1000 multiplier realizations
and the tests were carried out at the 5% level of significance.

[Table 1 about here.|

From the previous section, it is easy to verify that, in the univariate case, the change-
point statistics U, (resp. V1) coincide with the S, (resp. T, %) since S§ = {1}, and
that the S, and the T, are solely based on ranks. From the latter fact, it follows
that, under Hy and the assumption of continuity of Fjy, independent realizations of each
of the four global statistics based on the S, ; or the T}, ; can be obtained by computing
these global statistics from independent samples of size n generated from the standard
uniform distribution. A natural way of computing an approximate p-value for each of the
four global statistics then consists of proceeding analogously to (6) using /N independent
realizations. As we continue, the resulting four univariate tests will be referred to as the
tests based on Sy ,, Sy, Ty, and T |

n,v’ n,+’ n,v

Table 1 gives rejection percentages of Hy in dimension one for all the aforementioned
versions of the tests when data are generated under Hy. As can be seen, the tests



whose approximate p-value is computed using the processes ]13>$Z ) seem to be too liberal
(at least for n € {50,100}), and more liberal than their version computed from the
]13)% ), Nevertheless, as expected, the empirical levels of the multiplier tests improve as n
increases in the sense that they become closer to the 5% nominal level. Note that the
tests based on Sy, |, Sy, Tr and T . provide a sort of benchmark as, by construction,

n,v’) ~n,+7 T n,v

they should hold their level well for any n provided N is taken sufficiently large.
[Table 2 about here.]

Rejection percentages of Hy in the univariate case when data are generated under
H, are reported in Table 2. Three scenarios are considered: F} and F5 are the c.d.f.s
of the N(0,1) and the N(0.5,1) distributions, respectively; F; and F, are the c.d.f.s of
the N(0,1) and the N(0,2) distributions, respectively; and F; and F, are the c.d.f.s of
the exponential £(1) and E£(0.5) distributions, respectively. Notice that the parameter ¢
taking its values in {0.1,0.25,0.5} determines the position of the change-point in H; as

k* = |nt]. As one can see, the tests based on the processes DY) are consistently slightly
more powerful than those based on the IB)S ), while the rejections rates of the latter are,
overall, comparable to those of the tests based on simulation from the standard uniform
distribution. This merely appears to be due to the fact that the tests based on the
processes DY) are slightly too liberal for the sample sizes under consideration. Notice
that the differences in power decrease as n increases, as expected. Among the tests based
on the ]D%(f), the one based on Sn . seems, overall, to be the best choice for detecting
changes in mean, while the test based on Tn7+ seems, overall, to be the best choice for
detecting changes in variance. The former seems also to be the best choice, overall, when
data are generated under the third scenario involving exponential distributions. If one is
willing to make continuity assumptions on the underlying distributions, the tests based
on S, and T, are equivalently good candidates. Clearly, there exists more powerful

test for change-point detection if it is assumed that only a change in mean or variance
can occur (see e.g. Brodsky and Darkhovsky, 1993; Csorgé and Horvath, 1997).

In dimension two and three, we considered multivariate distributions constructed from
Sklar (1959)’s representation theorem. The latter result states that any multivariate c.d.f.
F : R? — [0,1] whose marginal c.d.fs FI1 . Fld are continuous can be expressed in
terms of a unique d-dimensional copula C' as

F(z) = C{FM(zy),. . Fld(z,)}, r e R4
[Table 3 about here.]

Table 3 reports rejection percentages under Hy when Fj is a bivariate c.d.f. with Clay-
ton or Gumbel-Hougaard copula and standard exponential or standard normal margins.
The parameter of the copula is chosen so that the theoretical value of Kendall’s tau is
equal to 7 € {0,0.25,0.5,0.75}. Note that 7 = 0 corresponds to independence while
7 = 0.5 entails moderate dependence between the two components. Note also that the
parameter m used in to discretize uniformly S, was set to 8 (see Appendix B for more
details). The settings m = 6 and m = 10 were also considered but this did not seem to
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affect the results much. As the tests whose approximate p-value is computed using the
processes DY appeared systematically too liberal for the sample sizes under considera-
tion, we only report the results of the tests based on the DY in Table 3. As can be seen,
the latter tests seem to hold their level reasonably well except perhaps the tests based
on Vn v and Vn+ which might be slightly too liberal for 7 = 0.75 and the sample sizes

under consideration. Similar results were obtained in dimension three.
[Table 4 about here.|

Estimated rejection rates when both distributions in H; have the same copula (Clay-
ton or Gumbel-Hougaard) but differ in one margin are given in Table 4. To be precise,
the bivariate distributions F} and F; only differ in the first margin which is standard
exponential for F; and exponential with rate 0.5 for F3, while the second margin of both
F} and F, is standard exponential. As one can see, the tests based on half-spaces are
substantially more powerful than the tests based on lower-left orthants. The test based
on U, . is the most powerful, overall, when 7 = 0, while, when 7 = 0.5, it is the test

based on ‘v/n,Jr that has, overall, the highest rejection rates.
[Table 5 about here.]

Table 5 reports rejection percentages when the change in distribution is only due to a
change in the dependence structure: both F} and F5 have standard exponential margins
but the copula of Fj is the Clayton (resp. Gumbel-Hougaard) copula with a Kendall’s tau
of 0.1, while that of F» is the Clayton (resp. Gumbel-Hougaard) copula with a Kendall’s
tau of 7 € {0.3,0.7}. As one can see from the overall low rejection percentages, this
problem appears to be more difficult than the previous one. The tests have hardly any
power for 7 = 0.3. For 7 = 0.7, the tests based on V,,, and V,, ; are the most powerful,
overall, although one should be cautious as they might be slightly too liberal in the case
of strongly dependent data according to Table 3.

The setting used to obtain Table 5 was finally extended to dimension three (results
not reported). The conclusions are very similar to those obtained in dimension two with
the difference that all the rejection rates are higher. Hence, as could have been expected,
detecting a change in the dependence becomes easier as the dimension increases.

5 Practical recommendations and illustration

From the results of the Monte Carlo experiments partially reported in the previous sec-
tion, the tests based on Sn . and Tn + seem good choices in the univariate case, while the
test based on Vn,+ seems to be a good one in the multivariate case.

As an illustration, we applied the tests based on the processes ]Iv))gsf ) to the trivariate
hydrological data collected at the Ceppo Morelli dam, Italy, studied in Salvadori et al.
(2011). The data consist of annual maxima for 49 years (in the range 1937-1994) of
three variables: L (dam reservoir water level in m), Q (peak flow in m?.s7!) and V (peak
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volume in 10% m?). For a detailed description of the data, we refer the reader to Section 2
of Salvadori et al. (2011).

[Table 6 about here.]

We first tested for a change in the distribution of (L,Q,V). The approximate p-values
of the eight tests based on the processes DY) are given in the first line of Table 6. Since
there are both physical and statistical reasons to believe that L is independent of (Q,V)
as explained in Salvadori et al. (2011), as a second step, we tested for a change in the
distribution of L and in the distribution of (Q,V) separately. The obtained approximate
p-values are reported in the second and third lines of Table 6. As can be seen from the
results of the test based on V,, |, there is strong evidence of a change in the distributions
of (I,Q,V) and (Q,V). From the second line of Table 6, we see that, on the contrary,
there is no evidence of a change in the distribution of L. The latter finding is completely
consistent with the fact that the variability of L is mainly due to the management policy
of the reservoir which is constant over time. Indeed, as explained in Salvadori et al.
(2011), the target of the dam manager is to keep a high water level in order to maximize
electricity production.

As classically done in the literature, under the hypothesis of a single break in a distri-_
bution, the change-point can be estimated by one of arg maxj <x<n—1 Sp i, arg Maxi<x<n—1 Ln )
arg maxi<g<n 1 (v]n,k Or argmaXj<i<n_ 1 Yv/n,k depending on which test one wants to con-
sider. For instance, the last estimator gives 31 for both (L,Q,V) and (Q, V'), which
corresponds to a change after the year 1976.

Finally, let us mention that the approach based on multivariate empirical c.d.f.s con-
sidered in Csorgdé and Horvédth (1997, Section 2.6) and in Gombay and Horvath (1999)
has been extended by Inoue (2001) to serially dependent observations, although the lat-
ter work is not aware of the former ones. A future research direction would be to study
generalizations as such proposed in this work in the setting considered by Inoue (2001).
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A Proofs

A.1 Proof of Theorem 1

To prove Theorem 1, we first show a lemma.
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Lemma 1. Let F be a P-Donsker class of functions with measurable envelope F, such
that PF? < co. Then,

SUp | Zn(s, f) = Zn(s, )| 223 0.
s€[0,1]

Proof. For any s € [0,1] and f € F, we have
N R 1 |ns]
Zn(3>f)_Zn(8>f) = (%;&) (P[nsjf_Pf)

Now, let Y, = |Prf — Pf|#, k € {1,...,n}. Note that Y; need not be measurable,
but, by the assumption that sup .z |f(z)| < Fo(z) for all 2 € R?, we have that

||Pkf — Pf”]: < P.F,+ PF, < o0,

where P.F, + PF, is measurable. Thus, for each k, there exists a smallest random
variable Y* < oo such that Yi(w) < Y*(w) for every w (see van der Vaart and Wellner,
2000, Lemma 1.2.1).

To prove the claim, it suffices to show that

k

1 a.s.
A, = max Y X —Z@ — 0,
3<k<
" \/ﬁizl

where the variables are all measurable. Now, for any n = 3, let a, = n~"?(loglogn)'/2.
Then,
Yy o aik » & Yy —1/2

k
Ap = max —— x —&= x =— < max — xn /“loglogn x max -,
s<k<n ap ~ nY? ap  3<k<n ay 3<k<n ay

where &, = k7130 &

Since F is P-Donsker with measurable envelope function F, satisfying PF? < oo, we
know from the law of the iterated logarithm for empirical processes (Dudley and Philipp,
1983; Kosorok, 2008, page 31) that limsup Y,*/a,, < oo almost surely, which implies that
MaXs<k<n Yy /ap < SUPg=g Yy /ar < oo almost surely. Similarly, from the law of the
iterated logarithm for the mean of an i.i.d. sequence with expectation 0 and variance 1,
we have maxscp<n &p/ar < SUDj=3 &/ap < oo almost surely. The desired result finally
follows from the fact that n='/?loglogn — 0. [ |

Proof of Theorem 1. The proof of the weak convergence of the finite-dimensional
marginal distributions of (Z,,Z,) to those of (Zp,Z) is a more complicated version
of the corresponding result for convergence of the rescaled random walk increments to
Brownian motion. It is omitted here for the sake of brevity.

To obtain that (Z,,Z,) ~ (Zp,Z) in {£2([0,1] x F)}2, it remains to show that
(Z,, %) is asymptotically tight (see e.g. van der Vaart, 1998, Section 18.3), which holds
if both Z,, and Zn converge weakly to tight random elements.
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From Theorem 2.12.1 of van der Vaart and Wellner (2000), we have that Z, ~ Zp in
(*([0,1] x F). Now, let

r_ L N
Gn_\/ﬁ;&((s)(i P)

be a multiplier version of G,. The class F being P-Donsker, from the functional un-
conditional multiplier central limit theorem (see e.g. van der Vaart and Wellner, 2000;
Kosorok, 2008), we have that G/, ~ G in (*(F), where G/ is an independent copy of
the P-Brownian bridge Gp, which implies that G/, is asymptotically tight. To show that
Loy~ Z'», where Z', is an independent copy of Zp, one can use the asymptotic tightness
of G/, and proceed as in the proof of Theorem 2.12.1 of van der Vaart and Wellner (2000).
Note that the proof can be further simplified if the process L is symmetric in the sense
of Chapter A.1 of van der Vaart and Wellner (2000), which happens if &3, . .., &, are sym-
metrically distributed around zero. In that case, Ottaviani’s inequality can be replaced
by Lévy’s inequality (see e.g. van der Vaart and Wellner, 2000, Proposition A.1.2), which
shortens the argument.

Hence, we have that (Z,, Z,) ~ (Zp,Z) in {£2([0,1] x F)}2. The fact that Z, is
independent of Zp comes via that the finite-dimensional distributions, which are multi-
variate normal, and the fact that Z,, and 7Z, are uncorrelated.

Next, notice that

SUp | Zn (5, f) = Zn(s, f)l7 = |Puf — Pf|# x sup
s€[0,1] s€[0,1]

1 ol
T Z; &

converges in outer probability to zero because sup 1 In=1/2 Zzlzslj &i| converges weakly
to the supremum of the absolute value of Brownian motion and ||P, f — Pf]» )

From the continuous mapping theorem, we have that (Z,, Zn, Zn, zn) v (Lp, Lo, T, 2y
in {¢*(]0,1] x F)}*. The desired result finally follows from the previous remark and
Lemma 1. |
A.2 Proof of Theorem 2
Proof. For any s € [0,1] and f € F, let
f)n(sa fl={1- /\n(s)}zn(sa f) = )‘n(s){in(L )= Zn(sa = Zn(sv )= An(5>zn(17 f)-

Then, from Theorem 1, (3), the definitions of D, and ]E)n, and the continuous mapping
theorem, we obtain that

~

(]D)na ]D)n7 f[/)n) ~ (]D)Po: ]D/Poa ]D)IPO)
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in {¢*([0,1] x F)}3. To obtain the desired result, it remains to show that B, — D, 5 0
in ¢°([0,1] x F). From the definitions of D,, and D,,, we have that

sup HD —ﬁn(s,f)H < sup {1 — Au(s)} sup
s€[0,1] F sef0,1] s€[0,1]

{Zu(1. ) = Zuls, N} = 25,1

F

Zn(s, £) = Zns. )|

F

+ sup A,(s) sup
s€[0,1] s€[0,1]

where Z’; is defined in (5). The second supremum over s on the right of the previous
inequality converges outer almost surely to zero according to Lemma 1. Furthermore, it
can be verified that the last supremum over s (written for instance as a maximum over
1 < |ns] < n) is nothing else than the version of the second supremum computed from the
“reversed” sequence (&, Xy), (§n—1, Xn—1),- .., (&1, X1). As the latter sequence and the
original sequence have the same distribution, Lemma 1 implies that the last supremum
converges in outer probability to zero. |

A.3 Proof of Theorem 3

To prove Theorem 3, we first prove a lemma.

Lemma 2. Let &,...,&, be i.i.d. random variables with mean 0, variance 1 and satis-
fying §3{P(|&] > 2)}?de < oo, let Xi,..., X, be ii.d. random variables with law P
independent of &1, ...,&,, and let F be a P-Donsker class with measurable envelope func-

tion F, such that PF, < co. Then, for every 0 < t; <ty < 1 and every € > 0, there exists
M > 0 such that o]

— (X > M| <

7 Zl &if (X)) ] ) e

Proof. Using the triangle inequality and the envelope F,, for any s € [0,1] and f € F, we
have

sup P* ( sup

neN se[tl,tg]

[ms]

Zé}

_l’_

N

|l | s
NG Z &{f( NG Zé f )
. 1
‘Zn(s,f)HerPFe x Zgl .

Let 0 < ) <ty < 1. Since Z,, ~ Zp in £2([0, 1]x F), we have that SUDge(ty 1] ||Z (s, )=
is asymptotically tight. Let € > 0. Then, there exists M’ > 0 such that

n— SE [tl,tz]

lim sup P* < sup Zn(s,f)H > M’) <e/4.
F

It follows that, for n > n.,

sup P* ( sup

nz=ne s€[t1,t2]

Zonl(s, f)Hf > M’> < /2.
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Since SuPgey, ] |Zn(s, f)|# is bounded by an almost surely finite random variable for any
n < ng, there exists M” > M’ such that

sup P* ( sup

neN s€E [t1 ,tQ]

s, f)Hf > M”) <2

Similarly, s — n=1/2 Zﬁslj & converges weakly to Brownian motion in ¢*(]0, 1]), and

therefore sup e, 4] [n=1/2 le’f'lj &| is uniformly tight. Proceeding as above, there exists
M" > 0 such that ]

1 ns
NIk

neN s€[t1,t2] i=1

sup P < sup

> M”’> <e/2.
We get the desired result with M = M" + PF, x M". [ |

Proof of Theorem 3 (i). First, notice that, for any s € [0,1] and any f € F,

K . SPlf—S{tP1f+ (1 —t)ng} if s < t,
(8 F) =V bR 4 (s— OB — s{PLf + (1 — )P} if s >

Let K, 1(s) = [An(s) {1 = Xu(5)} (Ppns) f — ]P’:L_[nsjf) — Ki(s, f)]|#. Clearly,
sup K,,4(s) = max{ sup K, :(s), sup Km(s)} )
s€[0,1] s€[0,t] se(t,1]

Furthermore, for any s € [0,1] and f € F,

)‘n(s) {1 - )‘n(s)} (]P)[nsjf - ]P):z—[nsjf) = )‘n(s) (P[nsjf - Pnf) .

Hence,

sup K, ((s) < sup H)\n(S)P[nst — sPlfo + sup [ A (s)Pnf —s{tPif + (1 —t)Pof}|~.
s€[0,t] s€[0,t] s€[0,1]
(7)

The first term on the right of the previous inequality is smaller than

Sy [An() (Brusy f = PrS) | - + ilﬁ] {An(s) = stPuf| £

se[0,t

1
= L up 125, Dl + 50 () — ol x IS
vn 0.t

N sefo,t] s€[0,t]

and therefore converges in outer probability to zero because sup,eo |Zn(s, f)| 5 con-
verges in distribution. The second supremum on the right of (7) is smaller than

sup |An(s) = s| X [Puf| 7 + [Puf — {tPf + (1 =) Pof}| 5

s€[0,1]

and therefore converges in outer probability to zero because, F being P, and P,-Donsker,
P, f converges in outer probability to tP; f + (1 — ¢) Py f uniformly in f € F.
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Similarly,

sup K, :(s) < sup H)\ VPl f —tPLf — (s — t)psz;

se(t,1] se(t,1]
+ u [Aa(8)Puf — s{tPif + (1 =) Paf}] 5
se|0,1

We already know that the second supremum on the right converges to zero in outer prob-
ability. Using the fact that, for s € (¢, 1], A, ( )IEDLMJ = M (O)Ppg) + {0 (5) = An(t )}]P’ nsJ [ntj’

where ]P)wgijlnﬂ = (|ns| — |nt|)~ Zlnsnt +10x,, the first supremum is smaller than

®) (Pt = P} o+ sup [10n(s) = MO B = Par ]

+ A (@) = t{{I Pl 7 + [Pl 2} + sup [An(s) = sl x [ Pof] £
se(t,

and converges to zero in outer probability because /| A (O{ Py f =P f}HF = |Zn(t, )l F
and /nsupge 17 [{An(s) — Anlt )}{]P’ Lns] - [ntjf P, f}]|7 converge in distribution. [ |

Proof of Theorem 3 (ii). Let us first show that supyp |Z(s, f)|# is bounded in
outer probability. Since
n<s,f)Hf},

it is sufficient to verify the claim for each of the suprema in the maximum. From the
definition of Z,,, under H;, the first supremum converges weakly from the continuous map-
ping theorem and is therefore bounded in outer probability. For the second supremum,

~

Za(s, )| . sup
F o ose(t,1]

sup
s€[0,1]

(8, f)H]-' = max{ sup

s€[0,t]

we write
A~ ~ [k
sup |Zn(s, f)H = max |Z, (—, f) <A,+B,+C,+ D,,
se(t,1] F [nt]<k<n n F
where
|nt] k
Z@ . Bu= max n7 > &)
F i=|nt|+1 F
(e) 18
C, = max — &G x> [X)]
Int]<k<n /T ~ k st S
and

1 k 1 &

D, = — § ) ox = § X,

"7 ntj<hen /10 (Z.:f) % (X5
]_‘
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The quantity A, is clearly bounded in outer probability by Lemma 2 with ¢; = t, = ¢.
For B,,, we can write

[ns|
B - \ 3 n 1, T
n Kklggz(ln H— nt]) 5601 : Z§+ t + tJ) .
n(1—t)|
Z €Z+|_7Lt 2+ nt) \/f|€n|Fe(Xn)7

where the two last terms on the right come from the fact that 0 < n—|nt|—|n(1—t)] < 1.
The first two terms on the right are bounded in outer probability by Lemma 2, and so is
the third one because it converges almost surely to zero. It follows that B, is bounded
in outer probability. Now, (), is bounded above by

Z@

ltJ
LY )

max
|nt|<k<n

1
< _
} P, { 7
f

< max —
|nt|<k

|_

where

1
I, = sup { —
s€[0,1] { Vn
Similarly, we have that D,, < I,,. To show that (), and D,, are bounded in outer proba-
bility, we will show that [, is bounded in probability.

Since n=! 377 | Fo(X;) converges to tP1F, + (1 —t)P,F, < oo almost surely, we have
that sup,eyn ' 2" Fo(X;) is an almost surely finite random variable. The fact that I,
is bounded in probability then follows from the weak convergence of s s n~'/2 Zﬁslj &
to Brownian motion in ¢*([0, 1]), which implies that supjo; [n ="/ Sl e is uniformly
tight.

Thus, A,, B,, C,, and D, are all bounded in outer probability, which implies that

SUDge(1,1] |Zn(s, f)| = is bounded in outer probability, and therefore that SUDye[0,1] 1 Zn(s, )| 7
is bounded in outer probability.

The analogous result for the process Z* follows from the fact that SUDge[0,1] 1Zx (s, )| =
(written for instance as a maximum over 1 < |ns| < n) is nothing else than the version
of Supepo 1 ||Zn(s, F)ll7 computed from the sequence (&,, X,), (&1, Xn-1),-.., (&1, X1)
which has the same distribution as the original sequence. The desired result is finally an
immediate consequence of (4). |

Proof of Theorem 3 (iii). For any s € [0,¢] and f € F, we can write

[ns] [ns]

Ln(s, f Z&{f —Pif} —{Puf — Pif} x —= Z&,

N¢
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while, for any s € [t,1] and f € F, we have

|l T
:\/_ﬁgfi{f(Xi)_Plf}_{Pnf_Plf} ~ _nZ&

[ns|

1 1
— Y Gf(X) = Pof} — {Puf — Pof} x — Z & (8)
\/ﬁi:[ntJJrl \Fz |nt|+1

_l’_

Now, let us show that

[ns] [ns]
<, Z&{f — Pif}, (s Z&) (Zp,, (s, f) = Bils))  (9)

in {¢{*([0,t] x F)}?, where B; is Brownian motion and is independent of Zp,. Using the
multivariate central limit theorem, it can be verified that we have weak convergence of
the finite-dimensional distributions. Joint asymptotic tightness follows from the weak
convergence of s+ n~'/2 leislj & to By in £%([0,1]), and the weak convergence of Z, to
Zp, in (*(]0, t]xF). Since the two component processes on the left of (9) are uncorrelated,
their weak limits are independent. Similarly, we have that

Lns] 1 lnel

1
7n i%}ﬂfz‘{f(Xi) — Py f}, (s, f) — 7n i%ﬂ&'

v (8, 1) = Zpy(s =1, f), (5, ) = Ba(s = 1)) (10)

in {¢*([t,1] x F)}?, where B, is Brownian motion independent of Zp,, and (Zp,, By) is
independent of (Zp,, By).

Combining the fact that P, f converges in outer probability to tPf + (1 — t)Pyf
uniformly in f € F with (9), we obtain from the continuous mapping theorem that, in
([0, t] x F), Zn converges weakly to (s, f) — Wp (s, f) = Zp, (s, f) — (1 — t)(Pof —
P, f)By(s). Using (10) similarly, it can be verified that, in ¢*([t, 1] x F),

(s, f) —

;| lnsl [ lnsl
— Af(X)) — Pof} —{P,f — P — ;
(s, f) = fl%]ﬂi{f( )= Pof} — {Puf — Pof} x ﬁgg

converges weakly to (s, f) — Wp,(s, f) = Zp,(s — t, f) — t(Pof — Pif)Bi(s —t). By
independence of first two terms in (8) with the last two terms, we then obtain that, in
o ([t 1] x F), Z,, converges weakly to (s, f) — Wp, (t, f) + Wp,(s, f), which implies that
Zn converges weakly in £([0,1] x F). The desired result finally follows from the fact
that Dy (s, f) = Za(s, f) — A (8)Zn(1, f) and the continuous mapping theorem. [ |

A.4 Proofs of Propositions 1 and 2

We state a lemma before giving the proofs of the propositions.
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Let A be the space of bounded Borel measurable functions on R? and let B be the
space of c.d.f.s of Borel probability measures on R?. The spaces A and B are subsets

of (% (Ed) and the topologies on A and B are the ones induced by uniform convergence.
The following result (the help of Johan Segers is gratefully acknowledged) will allow us
to apply the continuous mapping theorem in the proof of Proposition 1.

Lemma 3. Let ¢ : A x B — R be defined by ¢(a,b) = {,adb. The map ¢ is continuous
at each (a,b) € A x B such that a is continuous on R,

Proof. Let (an,b,) be a sequence in A x B such that sup,cga |a,(x) — a(z)] — 0 and
SUPgegd |bn () — b(x)] — 0. It is sufficient to show that {,,a,db, — {;,adb. By the

triangle inequality,
J andbn—f adb, J adbn—f adb‘.
R R4 R4 R4

J andbn—f adb‘<
R4 R4

For the first term on the right of this inequality, we have

J a, db,, — J adb,
Rd Rd

+

< J la, — a| db,
]R‘i

< sup [an(z) — a(2)| fRd dby, — sup |an (2) — a(z)| — 0.

z€eRd zeR4

For the second term, since sup,epa |bn(2) —b(x)| — 0, we have that b, (z) — b(z) for every
x € R?, which, by the Portmanteau lemma and the continuity of the function a implies

that (. adb, — (. adb. [ |

Proof of Proposition 1. A consequence of Theorem 2 and the fact that, under Hy, F,
converges almost surely to Fy (the c.d.f. of Py) uniformly in z € R? is that

(Dn,]ﬁ)g),...,15>§LN),HV)>(1),...,HVD§LN),F”) - (DPO,M}O),...,D;]OV),D%) .,D}?,FO)

00T

in {¢*°([0,1] x Ed)}(zN”). Using the map ¢ defined in Lemma 3, it is easy to see
that S,y = sup,efo1) S[{Dn(s, )}, Fu, that ST = sup,eoqy ¢[{D (s, -)}2 F,] and that
S9), = SUD,e[o,1] (b[{]ﬁ),(f)(s, V2, F,], 7€ {1,..., N}. Furthermore, the limiting process Dp,
is continuous almost surely. The result then follows from Lemma 3 and the continuous
mapping theorem. [ |

Proof of Proposition 2. From Theorem 3, we have that
D, (s, z)
An

where Ki(s,z) = {Fi(zx) — Fa(x)} (s At){1 = (s v i)}, ie, D,/s/n P K, in °([0,1] Ed).
Also, under H;, F,, converges almost surely to Fy = tF} + (1 — t)F, uniformly in x € R%.

Then,
{D(s,2)}?

Rd n

P*
— 0,

— Ki(s,x)

sup sup
s€[0,1] zeR4

sup <A, + B, (11)

s€[0,1]

dF, (z) — JRd{Kt(s, 2)12dF (x)
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where

D, 2
A, = sup Man(aj)—f (K,(s,7)2dE, (x)
se0,1] [JR n Rd
and
B = s |[ (s mar )~ [ (s )|
se[0,1] | JRd R
We have D )
A, < sup sup M—{K}(s,x)f 2o
n

s€[0,1] zeRd
by the continuous mapping theorem, and, with the notation g, = {K;(s, )}?, s € [0, 1],

B, = S}lp] ‘)\n(t)leJgs + {1 — )\n(t)}IP;_[mJgs —tPigs — (1 — t)ngs}‘
s€|0,1

< A (t) sup ‘(PlntJ — Pl)gs‘ + {1 =X\, (t)} sup ‘(P;_[m] — PQ)gS‘ + 2|\, (1) — 1
s€[0,1] s€[0,1]

because supyepo 1] |[P19s| < 1 and supyeo 1) [P2gs] < 1. Now,
2| P*
sup ‘(P[ntj - Pl)gs‘ < ‘(]P[ntj - Pl)(Fl - FQ) ‘ — 0
s€[0,1]
and p*
SE)PI] ‘(]P):zf[ntj - P2)9s‘ < ‘(]P):zf[ntj — P)(F1 — F2)2‘ —0
s€fo,

by the law of large numbers, which implies that B,, P20. Tt follows from (11) that

so [ Ba P gy e JRd{Kt(s,a:)}zdFt(x)

Rd n
in £*([0,1]), from which, using the continuous mapping theorem, we obtain that
Suo/n % sup | {Ki(s,0) A o)
se[0,1] Jrd
Since F; and Fy are distinct and K;(s,x) = {F(x) — Fa(x)}(s A t){1 — (s v t)}, we have
that supep 1y §ga{ K1 (s, 2)}2dFi(x) > 0, which implies that S,, . P oo
Now, let j € {1,..., N}. The claim for §,(f ), follows from the inequality

SO = sup | {DY(s,2)}2dFu(z) < sup sup{DY (s, y)}? f dF,(z) < {TY))2,
’ se[0,1] Jra s€[0,1] yeR? Rd ’

and the fact that 7, 7% is bounded in outer probability from Theorem 3. It remains
finally to prove the claim for S,(L])v A consequence of Theorem 3 is that (Dg),Fn)
converges weakly in {¢(*([0, 1] x Ed)}Z7 which, combined with the fact that gr(f)v =

SUDge[0,1] ¢[{]]3)7(1j)(5, 912 F,] and Lemma 3, implies that S, converges in distribution,
and hence, that it is bounded in outer probability. |
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B Implementation of the tests based on U, ; and V,,;

Let m > 2 be an integer and let ay, ..., a,, be elements of S uniformly spaced over S; .
For k € {1,...,n — 1}, the following numerical approximations are then considered:

and

Vok & max max
1<li<m 1<qg<n

k(n — k)
= — 7 max max
n3/2  1<i<m1<q<n

k n
1
Z 1(a] X; <a] X,) — Z 1(a] X; < a] X,)|.

Next, recall that, for any j € {1,..., N}, DY (resp. DY )) is the version of ]ﬁ)n (resp. ]]v)n)

(J)

computed from 51‘ e Proceedlng as above, for any j € {1,..., N}, the multiplier

versions of U, ; and Vn r based on the process D(J ) are computed respectlvely as

m n k
~ j’)c ~ m1n4 ZZ {( Z 5(3) J) Xz‘ < alTXq)

I=1¢q=1 i=1
n 2
—k Y (P - D)1 Xi < a) Xq>} ,

i=k+1

[y

(n— (J) a X < alTXq)

Mw

V(Jk) ~ n %2 max max
1<i<m 1<gsn

z=1

—k Y (€ - P01/ X < o X))

i=k+1

Slmﬂarly, for any j € {1,..., N}, the multiplier versions of U, and V,,; based on the

M)

process I}’ are computed respectlvely as

<

&

m n k
“ 1422[ k)Y eP1(a] Xi < af X,) — Fuyn(a) X,)}

mn = =1

[y

q=1

n 2
—k ) s§ﬂ>{1<afxi<a?Xq>—Fm,n<aIXq>}] ,

i=k+1
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and

k
Vé]k) ~ n~%? max max (n—k) Z fi(]){l(alTXi < alTXq) — Fal,n(alTXq)}
i=1

1<i<m 1<g<n
—k Y &M X < o X,) — Faulal X))},
i=k+1

where F,,, is the empirical c.d.f. computed from the projected sample a' X, ...,a" X,,.
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Table 1: Percentage of rejection of Hy in the univariate case computed from 1000 random
samples of size n generated under Hy defined in (1) where Fj is the c.d.f. of the standard
normal distribution.
n Sn,v Sn,v S:;}V Sn;i— Sn,-&- S:; + Tn,v Tn,v T:}V Tn7+ Tn,-i— T:7+
50 72 57 b7 77 51 59 67 58 57 84 52 43
100 65 55 62 60 49 6.1 71 66 65 81 62 6.2
200 59 48 43 59 46 55 54 45 45 75 54 43
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Table 6: Approximate p-values of the tests based on the processes DY for the trivariate
hydrological data considered in Section 5. The trivariate (resp. bivariate) tests based
on half-spaces were run with m = 32 (resp. m = 8). The approximate p-values were
computed from N = 10,000 multiplier realizations.
Variables S, Sp+ Thv Doy Unyv Untr Voo Vs
(L,Q,V) 0.114 0.120 0.015 0.028 0.010 0.010 0.004 0.006
L 0.479 0.314 0.510 0.236
(Q,V) 0.024 0.028 0.012 0.012 0.015 0.014 0.004 0.007
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